Search Results

Documents authored by Dory, Michal


Document
Fast Distributed Approximation for TAP and 2-Edge-Connectivity

Authors: Keren Censor-Hillel and Michal Dory

Published in: LIPIcs, Volume 95, 21st International Conference on Principles of Distributed Systems (OPODIS 2017)


Abstract
The tree augmentation problem (TAP) is a fundamental network design problem, in which the input is a graph G and a spanning tree T for it, and the goal is to augment T with a minimum set of edges Aug from G, such that T ∪ Aug is 2-edge-connected. TAP has been widely studied in the sequential setting. The best known approximation ratio of 2 for the weighted case dates back to the work of Frederickson and JáJá, SICOMP 1981. Recently, a 3/2-approximation was given for the unweighted case by Kortsarz and Nutov, TALG 2016, and recent breakthroughs by Adjiashvili, SODA 2017, and by Fiorini et al., 2017, give approximations better than 2 for bounded weights. In this paper, we provide the first fast distributed approximations for TAP. We present a distributed 2-approximation for weighted TAP which completes in O(h) rounds, where h is the height of T . When h is large, we show a much faster 4-approximation algorithm for the unweighted case, completing in O(D + (√n) log^{*} n) rounds, where n is the number of vertices and D is the diameter of G. Immediate consequences of our results are an O(D)-round 2-approximation algorithm for the minimum size 2-edge-connected spanning subgraph, which significantly improves upon the running time of previous approximation algorithms, and an O(hMST + (√n)log^{*} n)-round 3- approximation algorithm for the weighted case, where hMST is the height of the MST of the graph. Additional applications are algorithms for verifying 2-edge-connectivity and for augment- ing the connectivity of any connected spanning subgraph to 2. Finally, we complement our study with proving lower bounds for distributed approximations of TAP.

Cite as

Keren Censor-Hillel and Michal Dory. Fast Distributed Approximation for TAP and 2-Edge-Connectivity. In 21st International Conference on Principles of Distributed Systems (OPODIS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 95, pp. 21:1-21:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{censorhillel_et_al:LIPIcs.OPODIS.2017.21,
  author =	{Censor-Hillel, Keren and Dory, Michal},
  title =	{{Fast Distributed Approximation for TAP and 2-Edge-Connectivity}},
  booktitle =	{21st International Conference on Principles of Distributed Systems (OPODIS 2017)},
  pages =	{21:1--21:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-061-3},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{95},
  editor =	{Aspnes, James and Bessani, Alysson and Felber, Pascal and Leit\~{a}o, Jo\~{a}o},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2017.21},
  URN =		{urn:nbn:de:0030-drops-86475},
  doi =		{10.4230/LIPIcs.OPODIS.2017.21},
  annote =	{Keywords: approximation algorithms, distributed network design, connectivity augmentation}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail